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Axisymmetric free boundary problems
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We present a number of three-dimensional axisymmetric free boundary problems
for two immiscible fluids, such as air and water. A level set method is used where
the interface is the zero level set of a continuous function while the two fluids are
solutions of the incompressible Navier–Stokes equation. We examine the rise and
distortion of an initially spherical bubble into cap bubbles and toroidal bubbles.
Steady solutions for gas bubbles rising in a liquid are computed, with favourable
comparisons to experimental data. We also study the inviscid limit and compare our
results with a boundary integral method. The problems of an air bubble bursting at
a free surface and a liquid drop hitting a free surface are also computed.

1. Introduction
Axisymmetric free boundary problems have attracted considerable attention be-

cause they represent an excellent approximation to a number of important problems.
For example, in situations with gravity there is often symmetry in the plane perpen-
dicular to gravity; consequently the problem is reduced to only two space dimensions,
namely elevation and radius. This is often found in experimental situations, such as
an air bubble rising under gravity in water at moderate Reynolds numbers. This is
in contrast to usual two-dimensional problems in which it is often difficult to find
corresponding experimental conditions.

In this work we consider immiscible two-fluid flows such as water and air. We
shall restrict ourselves to flows where the fluid velocity is much less than the speed
of sound. This means we can approximate the fluids as incompressible. There has
been considerable work done in this direction for axisymmetric flows. Ryskin & Leal
(1984a, b) developed a method to compute the steady motion of a gas bubble rising
in a liquid. Their method is based on constructing an orthogonal coordinate system
which adjusts to fit the shape of the bubble. They confined their study to cases where
the gas density and viscosity are much less than those of the fluid so that the motion
of the gas could be neglected. A comparison of their work with the experimental
work of Hnat & Buckmaster (1976) was excellent. Subsequently, Dandy & Leal
(1989) extended this work to include the effects of the gas density and viscosity. In
addition, they compared their results to the experiments of Thorsen, Stordalen &
Terjesen (1968) and found excellent agreement.

A large body of work has focused on inviscid, incompressible axisymmetric flows
where boundary integral methods are particularly adept. Miksis, Vanden-Broeck
& Keller (1982) numerically deduced the shape of steadily rising bubbles using a
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formulation similar to the one developed by Longuet-Higgins & Cokelet (1976). Baker,
Meiron & Orszag (1984) developed a boundary integral method based on a dipole
representation of the velocity potential which they applied to some axisymmetric
problems. Lundgren & Mansour (1988) applied the method of Baker et al. to study
liquid drop oscillations. Lundgren & Mansour (1991) extended the method to include
toroidal geometry and studied vortex ring bubbles. Oguz & Prosperetti (1990) studied
the impact of drops on liquid surfaces and the subsequent entrainment of an air bubble
using a new boundary integral formulation. This work has important implications for
the sound generated by rain. More recently, Boulton-Stone & Blake (1993) studied
the problem of an air bubble bursting at a free surface. They included weak viscous
effects in their computations in which they extended the formulation of Lundgren &
Mansour (1988) by also considering the tangential component of the velocity due to
the viscous boundary layer.

There is a significant amount of work which makes use of boundary integral
formulations to study the collapse of an axisymmetric vapour bubble near a wall (see,
for example, Best & Kucera 1992; Blake & Gibson 1987; or Blake, Taib & Doherty
1986). Due to the greater mobility of the flow away from the wall, the collapse of
the bubble surface there proceeds at a greater speed than elsewhere, causing a jet
to form and thread the bubble. The jet eventually penetrates the bubble completely,
impacting the side of the bubble nearest the wall, causing the formation of a toroidal
bubble. The interfacial structure of the bubble as it is transformed into a toroidal
bubble is similar to that of an incompressible rising inviscid air bubble that eventually
transforms into a vortex ring bubble (studied by Lundgren & Mansour (1991) and
also studied in this paper). In the work of Best (1993) and Zhang, Duncan & Chahine
(1993), the boundary integral method was extended in order to compute through the
topology change. In both studies, the method used to handle the toroidal geometry
was different from that of Lundgren & Mansour (1991).

Szymczak et al. (1993) have also studied the collapse of an axisymmetric vapour
bubble near a wall. Like Best (1993) and Zhang et al., they were able to compute
through the topology change. Their approach used an Eulerian capturing scheme in
which a one-sided density constraint is used to maintain the incompressibility of the
liquid.

Nobari & Tryggvason (1994) have studied the coalescence of axisymmetric drops
using a front-tracking/finite-difference scheme. An interesting feature of this work is
that the Navier–Stokes equation is solved on a fixed grid with a front-tracking scheme
to locate the interface. The method has been modified to allow the merging of fronts.
It should also be pointed out that the above method was developed by Unverdi &
Tryggvason (1992) who have done both two- and three-dimensional calculations. The
method was extended to axisymmetric geometries by Jan & Tryggvason (1994) who
used it to study the rise of surface-contaminated bubbles.

In this paper we offer another approach for computing free surface problems. We
solve the Navier–Stokes equation in both fluids on a fixed grid as do Unverdi &
Tryggvason and Szymczak et al. We ‘capture’ the front by defining the interface to be
the zero level set of a continuous function which we shall call the level set function.
Quantities such as density and viscosity which exhibit large jumps at the free surface
depend on the level set function which is continuous across the free surface. The
level set approach has been used for applications involving flow by mean curvature
by Osher & Sethian (1988) and also for compressible multi-fluid flow applications by
Mulder, Osher & Sethian (1992). The advantage of this approach is that topology
changes present no difficulties; fronts can either merge or break up and no extra
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coding is required. In our case we use the signed normal distance from the interface
as the level set function. In the work of Sussman, Smereka & Osher (1994, henceforth
referred to as Paper I), the level set approach was enhanced in order to compute
two-dimensional free surface flows in which density and viscosity can have large
jumps at the free surface and stiff surface tension effects can be included. In this
paper we extend the results of Paper I to axisymmetric flows.

We examine several axisymmetric flow problems using the level set approach. We
first study drop oscillations in a zero-gravity environment and find agreement with the
theoretical results of Lamb (1932) and the numerical results of Lundgren & Mansour
(1988). We also include steady solutions of gas bubbles rising in water, which are
similar to the steady-state computations of Ryskin & Leal (1984b) and Dandy &
Leal (1989). Our numerical results are similar to the experimental results of Hnat &
Buckmaster (1976): our results for the rise speed differed by less than 5% from their
findings.

The next series of free boundary problems presented share as a common feature the
merging and/or break up of the interface We first study the rise and distortion of an
initially spherical gas bubble in an initially still liquid. This problem has been studied
in the inviscid limit by Lundgren & Mansour (1991). They show that the lower
surface of the bubble will impact its upper surface causing the formation of a toroidal
bubble. They do not, however, study the details after impact. We study the formation
of the toroidal bubble using the level set method and find excellent agreement with
Lundgren & Mansour before the time of impact. The level set approach allows us
to compute the flow through the impact. In order to validate the results of this
computation we also use a boundary integral method that allows for the topology
change. We find good agreement between these two approaches.

We next study the impact of a liquid drop on the free surface of the same liquid.
This problem is very important in the understanding of underwater noise created
by rain. Pumphrey & Crum (1988) have experimentally verified that a raindrop can
cause an air bubble to be formed in the water. Oguz & Prosperetti (1990) have
studied this problem numerically; for initial conditions, they considered the raindrop
to be physically connected to the free surface. Using the level set approach we found
reasonable agreement with the results of Oguz & Prosperetti and Pumphrey & Crum.

Finally, we study the problem of a gas bubble rising due to gravity through a liquid
and ultimately bursting at a liquid–gas interface. This problem has been studied by
Boulton-Stone & Blake (1993) using a boundary integral method. They chose initial
conditions so that the bubble is already connected to the free surface in a manner
similar to Oguz & Prosperetti (1990). We are able to study the impact of the air
bubble on the free surface using the level set method. We compute results for a
bubble that initially is fully submerged.

2. Level set formulation
2.1. Governing equations

To fix ideas we shall call one of the fluids a liquid and the other a gas. We assume that
both fluids are governed by the incompressible Navier–Stokes equation; therefore,

ρ`
Du`
Dt

= −∇p` + 2µ`∇ ·D+ ρ`g, ∇ · u` = 0, x ∈ the liquid,

ρg
Dug
Dt

= −∇pg + 2µg∇ ·D+ ρgg, ∇ · ug = 0, x ∈ the gas,

 (1)
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where u is the velocity, p is the pressure, ρ is the density, and µ is the viscosity of
the fluid. The subscripts ` and g denote the liquid and the gas phase, respectively.
D/DT is the material derivative, D is the rate of deformation tensor, and g is the
acceleration due to gravity. The boundary conditions at the interface, Γ , between the
phases are

(2µ`D− 2µgD) · n =
(
p` − pg + σκ

)
n and u` = ug, x ∈ Γ , (2)

where n is the unit normal to the interface drawn outwards from the gas to the liquid,
κ = ∇ · n is the curvature of the interface, and σ is the coefficient of surface tension.

We will denote the domain containing the two fluids as Ω and its boundary as ∂Ω.
Since the fluid cannot penetrate the boundary, we have

u · n = 0 on ∂Ω. (3)

Our main interest is the free boundary between the two fluids and not the boundary
layer at the solid wall (∂Ω). To suppress the formation of vorticity at the wall we use
the free-slip boundary condition

n · ∇u = 0 on ∂Ω. (4)

Note: condition (3) implies that we only consider bubbles of constant volume and
cannot consider bubbles that grow in size due to a decrease in hydrostatic pressure.

2.2. Level set function

In our algorithm the interface, Γ , is the zero level set of φ:

Γ = {x|φ(x, t) = 0}.

We also take φ < 0 in the gas region and φ > 0 in the liquid region. Hence, we have

φ(x, t)

> 0 if x ∈ the liquid
= 0 if x ∈ Γ
< 0 if x ∈ the gas.

(5)

The unit normal on the interface, drawn from the gas into the liquid, and the curvature
of the interface can easily be expressed in terms of φ(x, t):

n =
∇φ
|∇φ|

∣∣∣∣
φ=0

and κ = ∇ ·
(
∇φ
|∇φ|

)∣∣∣∣
φ=0

. (6)

Next, we let

u =

{
u`, φ > 0
ug, φ 6 0,

where u is called the fluid velocity. By virtue of the boundary conditions, u is
continuous across the interface. Since the interface moves with the fluid particles, the
evolution of φ is then given by

∂φ

∂t
+ u · ∇φ = 0. (7)

It was demonstrated by Osher & Sethian (1988) and Evans & Spruck (1991), for
the case when u is prescribed by the mean curvature of the front, that equation (7)
accurately moves the zero level set according to u even through the merging and
breaking up of fluid mass. To better understand equation (7), we can use ideas from
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the method of characteristics. Assume that at time t, the interface Γ is parameterized
by (x(s, t), y(s, t)), then the evolution of (x, y) is determined by the equations

dx(s, t)

dt
= u(x(s, t), y(s, t)),

dy(s, t)

dt
= v(x(s, t), y(s, t)).

Since φ(x(s, t), y(s, t), t) is defined to be zero for all (s, t), we must have

dφ(x(s, t), y(s, t), t)

dt
≡ dφ

dx

dx

dt
+

dφ

dy

dy

dt
+

dφ

dt
= φt + uφx + vφy = 0.

The governing equation for the fluid velocity, u, along with the boundary conditions
can be written as a single equation:

ρ(φ)
Du

Dt
= −∇p+ ∇ · (2µ(φ)D)− σκ(φ)δ(φ)∇φ+ ρ(φ)g, (8)

where ρ and µ are, respectively, the density and viscosity and δ is the Dirac delta
function. The surface tension force is interpreted as a body force localized on the
interface. By κ(φ) we mean

κ(φ) = ∇ ·
(
∇φ
|∇φ|

)
.

Since the density and viscosity are constant in each fluid, they take two different
values depending on the sign of φ; hence we write

ρ(φ) = ρg + (ρ` − ρg)H(φ) (9)

and

µ(φ) = µg + (µ` − µg)H(φ), (10)

where H(φ) is the Heaviside function given by

H(φ) =

 0 if φ < 0
1
2

if φ = 0
1 if φ > 0.

The Navier–Stokes equation for two-fluid flows was written in similar form and used
by Unverdi & Tryggvason (1992). The fact that the surface tension can be written as a
delta function concentrated at the interface has been used by Unverdi & Tryggvason
(1992) and Brackbill, Kothe, & Zemach (1992). The form we use here is due to Chang
et al. (1995). The derivation of equation (8) can be found in Chang et al. in which it
is shown that the formulation of (8) admits solutions which are consistent with the
free-surface boundary conditions (2).

2.3. Dimensionless form

It is useful to write (8) in dimensionless form using the following dimensionless
variables:

x = Lx′, u = Uu′, t = (L/U)t′, p = p′ρ`U
2, ρ = ρ`ρ

′, and µ = µ`µ
′,

where the primes denote dimensionless variables. If we substitute these variables into
(8) and drop the primes, we have

ut + ∇p/ρ(φ) = F , (11)
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where

F = −u · ∇u− z

Fr
+

1

ρ(φ)

(
1

Re
∇ · (2µ(φ)D)− 1

We
κ(φ)δ(φ)∇φ

)
, (12)

and z is a unit vector in the z-direction. The density and viscosity are now

ρ(φ) = λ+ (1− λ)H(φ) and µ(φ) = η + (1− η)H(φ), (13)

where λ = ρg/ρ` is the density ratio and η = µg/µ` is the viscosity ratio. The
dimensionless groups used above are the Reynolds number,

Re = ρ`LU/µ`,

the Froude number,

Fr = U2/gL,

and the Weber number,

We = ρ`LU
2/σ.

We shall also use the Bond number

B = ρ`gL
2/σ = We/Fr.

2.4. Axisymmetric flows

In this paper we consider only axisymmetric flows; therefore x = (r, z)T , where
r is the radial coordinate and z is vertical coordinate. Let ∇c = (∂r, ∂z)

T and
∇⊥c = (∂z,−∂r)T . The restriction to axisymmetric flows offers some simplification as
the velocity, u = (ur, uz)

T , can be deduced by a stream function. Thus it follows that

u = (1/r)∇⊥c ψ. (14)

If we substitute (14) into the ut term of (11), multiply by ρ(φ), and apply ∇⊥c · to both
sides, the pressure term is eliminated. This gives the following variable-coefficient
Poisson equation for ψt on Ω:

∇c ·
(
ρ(φ)

r
∇cψt

)
= ∇⊥c · (ρ(φ)F ), (15)

with boundary conditions

ψt = 0 for x ∈ ∂Ω. (16)

These boundary conditions follow since the normal velocity of u must vanish on the
boundary. In our numerical computations we will take

Ω = {(r, z)|0 6 r 6 R and 0 6 z 6 H},
where R and H are the radius and height of the domain.

The axisymmetric Navier–Stokes equations for two incompressible immiscible fluids
in level set form are given by (7), (13), (14), and (15).

2.5. Thickness of the interface

In order to solve (15) numerically we must modify it slightly due to the sharp changes
in ρ across the front and also because of the numerical difficulties presented by the
Dirac delta function contained in F . To alleviate these problems we shall give the
interface a fixed thickness that is proportional to the spatial mesh size. This allows
us to replace ρ(φ) by a smoothed density, ρε(φ), which is given by

ρε(φ) = λ+ (1− λ)Hε(φ), (17)
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with

Hε(φ) =

 0 if φ < −ε
1
2
[1 + φ/ε+ (1/π) sin(πφ/ε)] if |φ| 6 ε

1 if φ > ε.
(18)

The smoothed or mollified delta function is

δε(φ) =
dHε

dφ
. (19)

It is clear from (18) that the thickness of the interface is approximately

2ε/|∇φ|. (20)

In our algorithm the front will have a uniform thickness, consequently we must
have |∇φ| = 1 when |φ| 6 ε. A function that satisfies

|∇d| = 1 for x ∈ Ω with d = 0 for x ∈ Γ (21)

is called a distance function. This is because d is the signed normal distance to the
interface, Γ .

If a level set function is equal to a distance function it then follows from (18)
that the thickness of the interface is 2ε. In our numerical calculations we shall take
ε = α∆x where ∆x is the grid size. Therefore, the interface will reduce in thickness as
we refine our mesh.

Therefore it seems ideal to choose the level set function to be a distance function.
It is clear that we can choose φ(x, 0) to be a distance function; however, under the
evolution of (7) it will not necessarily remain as such. We must then be able to
solve the following problem: given a level set function, φ(x), reinitialize it to be a
distance function without changing its zero level set. This can be achieved by solving
the following partial differential equation:

∂d

∂τ
= sign(φ)(1− |∇d|), (22)

with initial conditions

d(x, 0) = φ(x),

where

sign(φ) =

−1 if φ < 0
0 if φ = 0
1 if φ > 0

(23)

and τ is an artificial time. The steady solutions of (22) are distance functions.
Furthermore, since sign(0) = 0, d(x, τ) has the same zero level set as φ(x). Therefore
we simply solve (22) to steady state and then replace φ(x) by d(x, τsteady). It is clear
from (18) that we need only φ to be a distance function close to the front. We have
then reached ‘steady state’ when

|∇d| = 1 for |d| 6 ε.
A nice feature of using this procedure is that the level set function is first reinitialized
near the front. To see this we rewrite (22) as

dτ + w · ∇d = sign(φ) (24)

where

w = sign(φ)∇d/|∇d|.
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It is evident that (24) is a nonlinear hyperbolic equation with the characteristic
velocities pointing outwards from the interface in the direction of the normal. Thus
d will be first reinitialized to |∇d| = 1 near the interface. Since we need the level set
function only to be a distance function near the interface, it is not necessary to solve
(24) to steady state over the whole domain. This indicates that only a fixed number
of iterations are necessary in order to ensure that the level set function is a distance
function near the interface. For example, if the iteration step size is ∆τ and the total
interfacial thickness is 2ε, we can stop the iteration process after no more than ε/∆τ
time steps. In practice we find that we need only two or three iterations as we are
already close to the distance function.

2.6. Numerical procedure

The details of the numerical procedure can be found in Paper I. The modifications for
the axisymmetric geometry are straightforward and can be found in Sussman (1994).
For the convenience of the reader we outline the basic numerical algorithm along
with improvements of the method.

2.6.1. Numerical algorithm

Step 1. Initialize φ(x, 0) to be the signed normal distance to the front. Initialize u(x, 0)
to be the initial divergence-free velocity (identically zero in our case).

Step 2. Compute F by replacing δ(φ) by δε(φ) and H(φ) by Hε(φ) in (12).

Step 3. Solve the Poisson equation (15) for ψt and compute a new ut. Use this to
update u; denote the updated u as un+1.

Step 4. Update the location of the interface by solving (7) for one time step using
un+1. Denote the updated value of φ by φn+1/2.

Step 5. Reinitialize φn+1/2 by solving

φτ = Sε(φ
n+1/2)(1− |∇φ|) with φ(x, 0) = φn+1/2(x)

to ‘steady state’. Here Sε is a smoothed version of (23). We denote this solution by
φn+1. By steady state we mean that |∇φ| = 1 +O(∆x) for |φ| < ε (as noted previously
ε = α∆x and typically α is 2).

Step 6. We have now advanced one time step. The zero level set of φn+1 gives the new
interface position and it is a distance function close to the front. One then proceeds
back to step 2.

Evidence was provided in Paper I to show that the numerical scheme converged
in a number of different applications. We have performed similar tests for the
axisymmetric case but chose not to present them here for the sake of brevity. In
the numerical calculations presented in §4 the mesh is sufficiently refined so that the
numerical method has converged.

2.6.2. Improvements

We have made several improvements of the level set method described in Paper I
to increase accuracy and stability. We use a third-order ENO method as developed
by Shu & Osher (1989) for differencing the advective terms. We also use a second-
order Runge–Kutta method to advance in time as opposed to the second-order
Adam–Bashforth scheme used in Paper I. Finally, we use an improvement in the
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reinitialization step which was developed by Fatemi & Sussman (1995) in order to
increase its accuracy.

We will now briefly discuss the modification to the reinitialization step. We interpret
the term, sign(φ), in equation (22) as a ‘constraint’ used both to prevent the interface
from moving and also to implicitly prescribe boundary conditions at the interface.
For discretization purposes we wish to enforce another constraint: the volume filled
by each fluid must stay constant throughout the reinitialization. For each cell, Ωij , we
define volume as

Vn
ij =

∫
Ωij

H(φn)rdrdz, (25)

where H is the Heaviside function described below equation (10) and φn is the value
of φ at τn, the ‘time’ after the nth iteration in the reinitialization step.

Because volume should not change, we should have Vn
ij = V 0

ij . Nevertheless, if the
reinitialization step slightly changes the location of the zero level set, we then have,
for τn − τ0 = O(∆x),

Vn
ij − V 0

ij ≈ (τn − τ0)

∫
Ωij

dHε(φ
0)

dτ
rdrdz

=

∫
Ωij

dHε(φ0)

dφ
(φn − φ0)rdrdz, (26)

where

dHε

dφ
=

{
0 if |φ| > ε
1
2
[(1/ε) + (1/ε) cos(πφ/ε)] if |φ| 6 ε. (27)

In order to minimize volume variation, we project the current values of the level set

function, denoted as φ̃nij , onto new values, denoted as φnij , which satisfy∫
Ωij

dHε(φ
0)

dφ
(φn − φ0)rdrdz = 0. (28)

If (28) is satisfied then by (26) the volume change will be very small. To implement
this projection we assume φnij has the form,

φnij = φ̃nij + λij(τn − τ0)
dHε(φ

0)

dφ
, (29)

where λij is assumed constant in Ωij . After substituting (29) into (28), we have

λij =

−
∫
Ωij

dHε(φ0)

dφ

(
φ̃n − φ0

τn − τ0

)
rdrdz∫

Ωij

(
dHε(φ

0)

dφ

)2

rdrdz

. (30)

Equation (30) is discretized in each cell by using a nine-point stencil to perform the
integration. Since λij is assumed constant in each cell, (30) can be solved both explicitly
and quickly. The projection step given by (29) is applied after each reinitialization
step. In our work we have found that the above constraint helps φ converge to a
distance function while still maintaining the original zero level set.



278 M. Sussman and P. Smereka

2.6.3. Far-field boundary conditions

Many experimental situations occur in large domains. Due to limited computing
resources it is not possible to compute in domains of this size. In certain situations,
the velocity field decays to zero sufficiently fast in space so that it is still possible
to compare with experiments even when the computational domain is small. There
are, however, situations where the effects of a small computational domain make
comparison with experiments difficult. In these cases it is expedient to modify the
scheme near the boundary to produce ‘far-field’ boundary conditions.

We still enforce zero normal velocity at the boundary, but assume that the cells, Ωij ,
which touch the wall, have dimensions ofM×∆x as opposed to ∆x×∆x. The difference
formulas in the advection and projection steps are then modified accordingly. The
constant, M, can be specified to be as large as necessary, as long as the tangential
velocity does not change much in the direction normal to the boundary. For a gas
bubble that attains a steady state (see figure 4), the expected steady rise speed matches
experimental findings within 5% when our far-field boundary conditions are used.
Without the far-field boundary conditions, wall effects would cause the steady rise
speed to be 14% slower than the expected value.

3. Boundary integral method
In this section, we will study the motion of gas-filled bubbles in an incompressible

inviscid liquid using a boundary integral method. The basic formulation of the
method is due to Baker et al. (1984). Their method has been modified by Lundgren
& Mansour (1991) to account for toroidal geometry. We will outline this method and
provide an alternative modification for the toroidal geometry.

The liquid outside the bubble is taken to be irrotational; therefore, its velocity, u,
is given by

u = ∇φ, where ∇2φ = 0. (31)

Because we are considering incompressible flows, this allows the velocity potential, φ,
to be represented by a distribution of dipoles on the bubble interface. This is given
by

φ(r) =

∫
Γ

µ(r′)n(r′) · ∇′g(r − r′)dS, (32)

where µ is the dipole density and

g(r − r′) = − 1

4π|r − r′|

is the Green’s function for the Laplacian in R3. The unit normal, n, is taken outward
from the liquid into the bubble. The beauty of the boundary integral approach is that
the entire solution can be deduced using information on the boundary. To deduce the
liquid velocity on the boundary, we first take the limit of (32) as the point, r, tends
to the bubble surface. This limit is

φs = 1
2
µ(r) +−

∫
Γ

µ(r′)n(r′) · ∇′g(r − r′)dS, (33)

where φs is the velocity potential on the bubble surface and −
∫

denotes the principal
value. Strictly speaking, the principal value is not necessary since the singularity is
integrable; however, we keep it to remind us that the integrand is singular. It is clear
that the tangential components of the velocity can be found from surface derivatives
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of φs. We introduce a vector potential, A, to find the normal component of the
velocity. A, evaluated on the surface, is

A = −
∫
Γ

µ(r′)n(r′)× ∇′g(r − r′)dS. (34)

Here the principal value is necessary. It follows that

u · n = (n× ∇) · A, (35)

and only requires surface derivatives to evaluate. With the velocity of liquid at the
surface of the bubble known, the motion of the interface is determined by

dr/dt = u. (36)

The time evolution of the velocity potential is determined by Bernoulli’s equation,

∂φ/∂t+ 1
2
|u|2 + p/ρ+ gz = p∞/ρ, (37)

where ρ is the liquid density, z is the vertical coordinate, g is the acceleration due to
gravity, and p∞ is the ambient pressure at z = 0. The jump in pressure across the
bubble surface must be balanced by surface tension; therefore

ps − p(b)
s = σ∇ · n,

where ps is the pressure on the liquid side of the interface and p(b)
s is the pressure

on the gas side; σ is the surface tension coefficient and ∇ · n is the curvature of the
interface. If we assume that the pressure in the bubble is spatially homogeneous we
can then combine the above equations to find the time evolution of

dφs/dt− 1
2
|u|2 + σ/ρ+ gz = (p∞ − pb(t))/ρ; (38)

pb(t) is the pressure in the gas bubble whose time dependence is determined so as
to keep the volume of the bubble fixed. It is clear that pb will only change φs by
a constant amount which will not affect u. Therefore it is unnecessary to determine
pb and the right-hand side of (38) can be set to zero. The procedure to solve this
system numerically is as follows: initially we know φ, so we solve (33) iteratively for
µ. Simple iteration will not work since

−
∫
Γ

n(r′) · ∇′g(r − r′)dS = − 1
2
;

thus (33) is only unique up to a constant. To remove this difficulty we can add a
constraint to (33) such as µ(0) = 0. With µ known, we use (34) to determine the
normal velocity. The tangential velocity is determined from φ; the velocity potential
is updated with Bernoulli’s equation and the interface position is updated with (36).
With the velocity potential and interface position updated we repeat the steps above
(for details on the numerical implementation, see Lundgren & Mansour 1988).

3.1. Modification for toroidal geometry

We observe that the bottom of the bubble can touch its top. When the bubble pinches
it has a toroidal shape and the liquid domain is no longer simply connected. Therefore
the velocity potential is cyclic or multiple-valued. To ensure a unique solution the
circulation (C) around the bubble must be specified; once specified it will remain
constant.
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In this case we modify (32) in the fashion suggested by Lundgren & Mansour
(1991):

φ = φ′ + φb, (39)

where

φ(r) = −
∫
Γ

µ(r′)n(r′) · ∇′g(r − r′)dS

and

φb(r) = C

∫
B

n(r′) · ∇′g(r − r′)dS.

Here B is an artificial barrier and must terminate strictly inside the bubble; φ′ is a
single-valued velocity potential, whereas φb is a cyclic velocity potential with a jump
of C across B; φb is the velocity potential of the vortex ring located on the boundary
of B. It is expedient, for numerical reasons, to keep the location of this ring as far
from the bubble interface as possible. An expression for φb is given in Lamb (1932,
§161), although here we use the above form for numerical computation. In a similar
fashion, we can write the vector potential as

A = −
∫
Γ

µ(r′)n(r′)× ∇′g(r − r′)dS + Cψbθ,

where ψb is the stream function for a vortex ring and θ is a unit vector in the
θ-direction (Lamb 1932, §161). The procedure used here is basically the same as
that used in the simply connected case. We use the above equations to compute
the velocity and use (36) and (37) to update the velocity potential and interface. As
pointed out by Lundgren & Mansour(1991), the fluid particles at the boundary must
not cross the barrier during a partial time step. To remove this possibility we simply
advect the barrier with the fluid particles on the boundary. Without modification,
the edge of the barrier can become very close to the bubble interface; therefore
we periodically reposition the barrier so that its edge is not close to the interface.
Lundgren & Mansour present a different solution which ultimately has the centre of
the vortex ring at the centre of mass of the bubble. We tried the approach outlined
by Lundgren & Mansour and obtained identical results. The disadvantage of their
approach is that the centre of mass can be a bad location for the vortex ring. The
disadvantage of our approach is that we need to explicitly determine the velocity
potential of the vortex ring. Best (1993) also offers a method for computing in the
toroidal geometry; rather than keep the barrier a disc he chooses to advect the entire
barrier with the fluid. More recently, Best (1994) keeps the barrier a disc.

3.2. Implementation of the topology change

The numerical calculations of Lundgren & Mansour (1991) show an incompressible
gas bubble rising under gravity in an irrotational liquid. When the bubble is initially
spherical and the surface tension is sufficiently small, they find that the bottom surface
of the bubble will collide with its upper surface at a single point. As postulated by
Benjamin & Ellis (1966, see also Benjamin 1987), this will give rise to a toroidal bubble
with circulation. The circulation will be equal to the difference of velocity potentials
between the two colliding points on the bubble surface. This postulate was used by
Lundgren & Mansour (1991) to estimate the circulation around a toroidal bubble.
They went on to compute the motion of a toroidal bubble; the initial condition
was a torus with a circular cross-section. They did not, however, explore the details
occurring immediately after collision.
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Best (1993) considered the collapse of a compressible gas bubble and the details
of the topology change. He utilized the concept of pressure impulse to show that
the velocity potential on the surface of the bubble would not change for points that
did not collide and that the circulation could be determined using the postulate of
Benjamin & Ellis (1966). He used this argument to develop a numerical algorithm
to integrate the bubble through the topology change. The fundamental difficulty
with this approach is that the topology change has to be implemented by numerical
‘surgery’. Briefly, this is done as follows: first, one integrates the equations of motion
until the lower surface gets as close as possible to the upper surface (the singular
nature of the kernel in (33) prevents integration to the collision time). Next, one
removes the two points on the axis of symmetry and ‘connects’ the upper and lower
surfaces using some sort of numerical interpolation (we use cubic splines). In our
calculations we implement this ‘surgery’ in a manner very similar to the approach
taken by Best (1993). Although a reasonable approach, it should be emphasized
that it is arbitrary. In the level set method the thickness parameter is also arbitrary.
However, our studies indicate that our results are not sensitive to this parameter.

4. Results
4.1. Zero-gravity liquid drops

4.1.1. Linear motion

We now compute zero-gravity drop dynamics and compare these with the linearized
drop oscillation solutions of Lamb (1932). The interfacial position of the drop is
shown to be

r(θ, t) = a+ εPn(cos(θ)) sin(ωnt),

where

ω2
n =

1

We

n(n− 1)(n+ 1)(n+ 2)

a3(n+ 1 + nλ)
(40)

and Pn is the Legendre polynomial of order n. This equation is written in dimensionless
form (the solution can be found in Lamb 1932, §275). If viscosity is present, the
amplitude is proportional to exp(−t/τ), where

τ =
a2Re

(2n+ 1)

(
n+ λ(n+ 1)

n(n− 1) + η(n+ 1)(n+ 2)

)
. (41)

This equation is derived following the approach outlined in Lamb (1932, §355).
We compute the evolution of a drop with a = 1, Fr = ∞, Re = 200, We = 2,

λ = 0.01, and η = 0.01. The initial interface is given by r(θ, 0), with ε = 0.02 and
n = 2. With these parameters we find ω2 = 2.00 and τ = 38.3. The fluid domain is
Ω = {(r, z)|0 6 r 6 1.5 and 0 6 z 6 3} and the grid size is 50 × 100. The results of
our computation are shown in figure 1 where we display r(0, t) and compare it with
the expected linearized viscous effects. The average dimensionless period is 3.18 and
the expected linearized period is 3.14.

4.1.2. Nonlinear motion

For our second test, we compute large-amplitude oscillations and compare these
with the results of Lundgren & Mansour (1988). We compute the evolution of a drop
with Fr = ∞, Re = 2000, W = 2, λ = 0.01, and η = 0.01. The initial interface is
given by r(θ, 0), with ε = 0.3 and n = 4. The fluid domain is Ω = {(r, z)|0 6 r 6 2
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Figure 1. Motion of a viscous drop in zero gravity with λ = 0.01, η = 0.01, Re = 200, We = 2,
and Fr = ∞: the time evolution of r(0, t) initialized with P2 shape (the solid curve) along with the
predicted viscous envelope (the dashed curve).
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Figure 2. Motion of a viscous drop in zero gravity with λ = 0.01, η = 0.01, Re = 2000, We = 2,
and Fr = ∞: the shape oscillations when the drop is initialized with a P4 shape.

and 0 6 z 6 4} and the grid size is 64× 128. In figure 2, we display the drop shape
from t = 0 to t = 1.6. In figure 3, we compare results at t = 1.1 using the level set
method to corresponding results computed by Lundgren & Mansour (1988, see figure
6) using the boundary integral method. The shape and period of oscillation are very
close to that of Lundgren & Mansour (1988).
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(a) (b)

z
–2 –1 0 1 2

Figure 3. Comparison at t = 1.1 of the motion of an oscillating viscous drop in zero gravity
computed using the level set method (a) and computed using the boundary integral method (b)
of Lundgren & Mansour (1988). The drop is initialized with a P4 shape with λ = 0.01, η = 0.01,
Re = 2000, We = 2, and Fr = ∞.

4.2. Rising gas bubble in a liquid

4.2.1. Steady-state results

Hnat & Buckmaster (1976) conducted experiments with spherical-cap air bubbles
rising in a liquid. The properties of the liquid and the gas are ρ` = 0.8755 g cm−3,
ρg = 0.001 g cm−3, µ` = 1.18 P, and µg = 0.01 P. The coefficient of surface tension
is σ = 32.2 dyn cm−1. These experimental parameters give rise to the dimensionless
quantities λ = 0.0011 and η = 0.0085.

In our numerical computations, the fluid domain is Ω = {(r, z)|0 6 r 6 3 and
0 6 z 6 12} and the grid size is 64× 256. We use our far-field boundary conditions
(see §2.6.3) in order to circumvent viscous wall effects. We shall compare our results
with the experiments shown in figures 1A and 1C of Hnat & Buckmaster.

Bubble A We first examine the situation recorded in figure 1A of Hnat & Buckmaster
where they observed that the steady rise speed of a gas bubble was 21.5 cm s−1. Its
volume was 0.94 cm−3 which gives an effective radius of 0.61 cm. This gives rise to
the dimensionless quantities Re = 9.8, Fr = 0.76, and We = 7.6. The dimensionless
rise speed should therefore be 1. We start with a spherical bubble of dimensionless
radius one. In figure 4 we display the time evolution of the bubble. We observe that
the bubble reaches a steady state with a final speed of 1.02 which corresponds to
21.9 cm s−1. Figure 5 displays our computed rise speed of the bubble as function
of time. The numerically computed speed and shape of the bubble are in agreement
with the experimental observations of Hnat & Buckmaster. Our results are also in
agreement with those of Ryskin & Leal (1984b, figure 6), who compute the same flow
using a steady code.

Bubble C In figure 1C of Hnat & Buckmaster, a bubble of volume 5.2 cm−3 was
observed to be moving with a steady speed of 30.5 cm s−1. The effective radius was
1.08 cm. This gives rise to the dimensionless quantities Re = 24.4, Fr = 0.88, and
We = 27.2. Our initial condition was a spherical bubble of dimensionless radius
one. The time evolution of the bubble is displayed in figure 6. The bubble is seen
to develop skirts which then break off, leaving behind a spherical-cap bubble rising
at a constant speed. The steady rise speed in our computations was 29 cm s−1, in
close agreement with the observed value of 30.5 cm s−1. The shape of the computed
bubble also agreed with the findings of Hnat & Buckmaster. There is a difficulty,
however, with making a direct comparison between this numerical computation and
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t = 0 1.2 2.4 3.6

4.8 6.0 7.2 8.4

Figure 4. Evolution of a viscous gas bubble with λ = 0.0011, η = 0.0085, Re = 9.8, We = 7.6, and
Fr = 0.76. This corresponds to bubble A of table I in Hnat & Buckmaster (1976).
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Figure 5. The time evolution of the velocity of the top of the bubble shown in figure 4.

the experimental results as the final bubble in our computation has a smaller volume
than the bubble used in the experiment.

In the experiments of Hnat & Buckmaster, the volume was measured after the
bubble had reached the top of the chamber instead of being measured initially. It
is possible that the initial bubble could have developed thin skirts that eventually
disintegrated into tiny air pockets, while the remainder of the bubble attained the
steady-shape shown in figure 1C of Hnat & Buckmaster. To circumvent this difficulty,
we allow the parameters, Re, We, and Fr, to vary linearly from the parameters of
the Bubble A case (t = 0) to those of the Bubble C case (t = 4). Thus, we essentially
start our bubble at t = 4 with a preset initial shape and velocity. In figure 7, we
see that the results using our ‘varying parameters’ technique compare well with the
experiments found in figure 1C of Hnat & Buckmaster. The final rise speed of our
numerical computations was 29.5 cm s−1.

Skirted bubbles Figure 8 shows an example of a skirted bubble which corresponds
to Re = 70, We = 115, and Fr = 99. We start with a spherical gas bubble at
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t = 0 1.2 2.4 3.6

4.8 6.0 7.2 8.4

Figure 6. Evolution of a viscous gas bubble with λ = 0.0011, η = 0.0085, Re = 24.4, We = 27.2,
and Fr = 0.88. This corresponds to bubble C of table I in Hnat & Buckmaster (1976).

t = 0 1.2 2.4 3.6

4.8 6.0 7.2 8.4

Figure 7. Evolution of a viscous gas bubble with λ = 0.0011, η = 0.0085, Re = 24.4, We = 27.2,
and Fr = 0.88. This corresponds to bubble C of table I in Hnat & Buckmaster(1976). The initial
data for this problem are the result at t = 4.0 of allowing a bubble to rise with the parameters of
bubble A and then linearly varying Re, We, and Fr until they reach the parameters of bubble C at
t = 4.0.

t = 0 and allow the parameters to vary, starting with the parameters of Bubble A,
until t = 4. Our computed skirted bubble shares the basic features of the idealized
skirted spherical-cap bubble shown in figure 2 of Hnat & Buckmaster. In addition,
our computed skirted bubble has parameter values in the range where Hnat &
Buckmaster observed skirted-cap bubbles.
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Figure 8. Evolution of a viscous gas bubble with λ = 0.0011, η = 0.0085, Re = 70, We = 115, and
Fr = 0.99. The initial data for this problem are the result at t = 4.0 of allowing a bubble to rise
with the parameters of bubble A and then varying Re, We, and Fr linearly until they reach the
parameters given above at t = 4.0.

4.2.2. Topology changes

Ryskin & Leal (1984a,b) found that as the Reynolds and Weber numbers were
increased they were unable to find steady rising bubble solutions using their method.
This may be a result of the bubbles’ tendency to undergo a topology change.

Lundgren & Mansour (1991) consider the time evolution of an initially spherical
bubble. They take the bubble to be massless, incompressible and surrounded by
an irrotational inviscid liquid (Re = ∞). Their calculation shows that if the surface
tension is sufficiently small (We sufficiently large) the bottom surface of the bubble
will collide with its upper surface.

We now consider the motion of an inviscid gas bubble rising in an inviscid liquid
with Fr = 1, B = 200, and Re = ∞. In the boundary integral calculation we have
λ = 0 with the liquid of infinite extent, whereas in the level set computation we
take λ = 0.001 with the domain Ω = {(r, z)|0 6 r 6 4 and 0 6 z 6 8}. We do not
expect these differences to be responsible for any significant deviation between the two
approaches. Our initial conditions consist of a spherical bubble with radius unity at
rest in a quiescent fluid. We use 120×240 grid points for the level set computation and
120 points for the boundary integral method. We have also repeated the calculation
for B = 10.

In figures 9 and 10, we display our results for Bond numbers, B = 200 and B = 10.
Each figure compares the results of the boundary integral method to those of the
level set method. The results are in close agreement with each other and with the
results of Lundgren & Mansour(1991) until the time of the topology change. After
the topology change the two different approaches are only in qualitative agreement.
There are a number of possible reasons for the discrepancy, which are as follows:

(a) the ‘surgery’ performed in the boundary integral method is slightly inconsistent
with a solution of the incompressible Euler equations;



Axisymmetric free boundary problems 287

2.4 2.6 2.8 3.0

t = 0 0.6

1.6 1.8 2.0 2.2

0.8 1.0 1.2 1.4

0.2 0.4

Figure 9. Evolution of an initially spherical gas bubble with λ = 0.001, Re = ∞, B = 200 and
Fr = 1. The dashed lines represent the results from the boundary integral scheme and the solid
lines represent the results from the level set method.
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Figure 10. Evolution of an initially spherical gas bubble with λ = 0.001, Re = ∞, B = 10 and
Fr = 1. The dashed lines represent the results from the boundary integral scheme and the solid
lines represent the results from the level set method.

(b) there is significant numerical viscosity of the level set method at the topology
change;

(c) there is a loss of uniqueness of solutions through the topology change and each
method picks its own different solution.

It is our feeling that (a) is probably the most significant source of the discrepancy.
Nevertheless, we find the results encouraging. These calculations appear to confirm
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Figure 11. Evolution of an initially spherical gas bubble with λ = 0.001, η = 0.01, Re = 100,
B = 200, and Fr = 1.

(a) (b) (c)

Figure 12. Comparison for various Reynolds numbers for the rising gas bubble problem with
λ = 0.001, η = 0.01, B = 200, and Fr = 1 at t = 1.2. (a) Re = 100, (b) Re = 400, (c) Re = ∞.

(a) (b) (c)

Figure 13. Comparison for various Reynolds numbers for the rising gas bubble problem with
λ = 0.001, η = 0.01, B = 200, and Fr = 1 at t = 2.0. (a) Re = 100, (b) Re = 400, (c) Re = ∞.

the ideas developed by Benjamin & Ellis (1966) and Best (1993) concerning the
formation of toroidal bubbles. The agreement between the level set method and the
boundary integral method, prior to the topology change, indicates that the level set
method has insignificant numerical viscosity for smooth interfaces.

In figures 11, 12, and 13, we demonstrate the effects of viscosity using our level set
scheme. Figure 11 shows the same calculation as in figure 9 but for Re = 100. It is
clear that the basic features have persisted with the inclusion of viscosity although
the presence of viscosity has smoothed the bubble surface.

It is known (see Saffman 1956), for Reynolds numbers greater than 200, that
inviscid bubble motion should closely approximate the viscous case. Our level set
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Figure 14. Evolution of a drop impinging on a water surface with λ = 0.001, Re = ∞, Fr = 26.12,
and We = 21.95. This corresponds, approximately, to a 2.5 mm water drop hitting the water surface
at 0.8 m s−1.

computations are consistent with this result even after the topology change. Our
results for Re = 400 are very close to that for the inviscid case, whereas for Re = 100
the effects of viscosity start to become noticeable (see figures 12, and 13).

4.3. Water drop impinging on a pool of water

Oguz & Prosperetti (1990) used a boundary integral scheme to compute the motion
of an air–water free boundary after the impact of a raindrop. For initial conditions
they took the drop to be already attached to the surface. They also compared their
numerical results to the experimental observations of Pumphrey & Crum (1988) and
found good agreement. Both studies found that the raindrop can cause a small air
bubble to be entrained below the water surface. The air bubble entrainment was
found to depend on the size and velocity of the raindrop. For example, if the drop
is moving either too fast or too slow it will not entrain an air bubble. Oguz &
Prosperetti found excellent quantitative agreement with Pumphrey & Crum on the
drop size and velocity needed for entrainment. The entrained air bubble is thought
to be an important source of underwater rain noise.

We also studied this problem using the level set method; unfortunately, we could
not compute on a large enough domain to compare quantitatively with the results of
Pumphrey & Crum (1988) and Oguz & Prosperetti (1990). We also found that the
far-field boundary conditions did not work because the velocity field did not decay
fast enough in space. Nevertheless, we obtained good qualitative agreement and we
were able to compute past the time at which the bubble was entrained. The domain
for our numerical computations is Ω = {(r, z)0 6 r 6 3.8 and 0 6 z 6 7.6} with a
63 × 126 grid; we take λ = 0.001 and η = 0.01. We start our computations with a
drop suspended just above the surface, and an initial gravitational force chosen such
that the impact velocity is the proper dimensionless value at t = 0.2. For t > 0.2 the
gravitational force is reset back to its proper value.

In figure 14 we present a calculation with Re = ∞, Fr = 26.12, and We = 21.95.
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Figure 15. Evolution of a drop impinging on a water surface with λ = 0.001, Re = ∞, Fr = 58.77,
and We = 49.38. This corresponds, approximately, to a 2.5 mm water drop hitting the water surface
at 1.2 m s−1.
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Figure 16. A detail of figure 15.

This corresponds to a 2.5 mm water drop hitting the water surface at 0.8 m s−1.
At impact we see tiny air bubbles trapped in the water which later break up into
bubbles too small to be resolved. The subsequent motion of the water fails to entrain
an air bubble. In figure 15 we present a calculation with Re = ∞, Fr = 58.77, and
We = 49.38. This corresponds to a 2.5 mm water drop hitting the water surface at
1.2 m s−1. In this case we see that an air bubble is entrained in a similar fashion
to that shown by Oguz & Prosperetti (1990). Figure 16 shows the details of the air
bubble entrainment.
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Figure 17. Evolution of a water jet resulting from a submerged gas bubble. λ = 0.001, η = 0.01,
Re = 474, We = 1, and Fr = 0.64. This corresponds to an air bubble of radius 4 mm in water.

4.4. Gas bubble bursting at a free surface

Next we turn to the problem of a gas bubble rising to the free surface of a liquid.
When the bubble breaks through the surface, large surface tension forces are produced
which ultimately cause a jet of liquid to be ejected. This jet of liquid can subsequently
break up into drops.

This problem was studied by Boulton-Stone & Blake (1993) using the boundary
integral method with two different types of initial conditions. In one case, they
consider a bubble that has already risen to the surface and is in static equilibrium
before it bursts; this is called the ‘pre-burst’ case. They also considered the initial
condition whereby a spherical bubble bursts at the surface. They found a considerable
difference between the results for two initial conditions.

In our calculation, we consider a spherical gas bubble released just below the
surface. We shall consider two situations which correspond to 4 and 5 mm air
bubbles in water. The domain is Ω = {(r, z)|0 6 r 6 3 and 0 6 z 6 12} and the mesh
is 44× 176. For these computations we have λ = 0.001, η = 1, and We = 1. For the
4 mm gas bubble Re = 474 and Fr = 0.64; for the 5 mm gas bubble Re = 531 and
Fr = 0.29. As the size of the bubble is reduced, the numerical problem becomes stiff.
Since our method is explicit, extremely small time steps become necessary. Due to
limited computing resources, we were unable to consider bubbles smaller than 4 mm
and we were unable to compute on a large enough domain. This makes a quantitative
comparison with Boulton-Stone & Blake (1993) impossible.

Our results, nevertheless, share many features predicted by their work; these results
are shown in figures 17 and 18. In each case, we observe a jet of liquid ejected from
the surface which is very similar to the results shown in figure 6 of Boulton-Stone
& Blake (1993). The level set formulation allows us to continue the computation
beyond the point where the liquid jet starts to break up into drops. The velocity
of the liquid jet is plotted in figure 19. This graph is in reasonable agreement to
the results displayed in figure 6 of Boulton-Stone & Blake despite the fact that their
results were for a bubble of 3 mm. When comparing the jet speed for differently sized
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Figure 18. Evolution of a water jet resulting from a submerged gas bubble. λ = 0.001, η = 0.01,
Re = 531, We = 1, and Fr = 0.29. This corresponds to an air bubble of radius 5 mm in water.
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Figure 19. The jet speed for figures 17 and 18. The solid line is for the 4 mm bubble and the
dashed line is for the 5 mm bubble.

initial bubbles, we find that smaller bubbles yield a larger jet speed which was also
observed by Boulton-Stone & Blake.

5. Conclusion
We have presented an Eulerian scheme for computing a general incompressible

flow on an axisymmetric domain. We have shown good agreement with the boundary
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integral method, in spite of the difficulties due to the instabilities of inviscid flow and
surface tension effects. Furthermore, we have demonstrated the ability to compute
flow beyond interfacial singularities such as fluid entrapment and fragmentation. In
the future, we would like to take advantage of adaptive mesh technology in order to
better resolve the fine scale features of air/water flow.
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